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Abstract
We describe our initial explorations in simulating non-euclidean geometries in virtual reality. Our simulation of the
product of two-dimensional hyperbolic space with one-dimensional euclidean space is available at h2xe.hypernom.com.1

Figure 1: A view from H2 × E.

We are used to living in three-dimensional euclidean space, and our day-to-day experiences of curvature
centre around surfaces embedded in E3. In the study of topology, the closed two-dimensional surfaces
are the sphere, the torus, the two-holed torus, the three-holed torus, and so on. Thinking of these surfaces
topologically, they don’t come with a particular choice of geometry – that is, we can think about a surface as
if it were made from plasticine – without knowing what lengths and angles mean on the surface. There are
however particularly nice geometries for these surfaces: they are homogeneous, meaning that the geometry is
the same everywhere in the space, and isotropic, meaning the geometry is the same in every direction. We
have spherical geometry for the sphere, euclidean geometry for the torus, and hyperbolic geometry for all of
the others. In three dimensions, the story is more complicated. Thurston’s geometrization conjecture, proved
by Perelman [3], gives eight geometries that a three-manifold can take (although the manifold may need to
be decomposed into pieces, each with one of the eight geometries). The eight geometries are S3, E3, H3,

1The code is available at github.com/henryseg/H2xE VR.

http://h2xe.hypernom.com
https://github.com/henryseg/H2xE_VR


(a) View in the H2 direction. (b) View in a diagonal direction.

(c) View in the E direction. (d) Another view in a diagonal direction.

Figure 2: Views of the {4, 6} tiling of H2×E. We draw the honeycomb to a depth of seven steps from the central cube.

S2 × E, H2 × E, Nil, ˜PSL2(R) and Solv [4]. The first three are again homogeneous and isotropic: spherical,
three-dimensional euclidean and hyperbolic geometries. The other five are homogeneous, but not isotropic:
the geometries look different when you look in different directions. The geometries S2 × E and H2 × E are
mixtures of the two-dimensional geometries and one-dimensional euclidean space. The last three are more
complicated versions of these mixed geometries: Nil and ˜PSL2(R) are “twisted” versions of E2 × E and
H2 × E respectively, whilst Solv can be seen as a different kind of product of E2 and E, in which moving in
the E direction stretches and squeezes the E2 in two orthogonal directions.

Jeff Weeks’ software Curved Spaces [5] is a “flight simulator for multiconnected universes”. It simulates
movement within a selection of closed three-dimensional manifolds, with S3, E3 and H3 geometries. Each of
these is viewed as if we are living inside the space and seeing objects in the space via rays of light that travel
along geodesics in the space. That is, light travels along paths of shortest distance.

A space such as H3 is appealing to create and explore because like euclidean space, E3, it is homogeneous
and isotropic. Yet, when you move through the space, you encounter several unexpected consequences,
including the effects of holonomy and geodesic deviation. Holonomy is a rotation of your reference frame as
you traverse a loop in a curved space, which leads to the virtual floor becoming tilted away from horizontal.
Geodesic deviation is the divergence or convergence of two geodesics that start out in parallel directions,
which leads to the floor falling out from beneath your feet as you walk forward [1].

We sought a gentler introduction to hyperbolic geometry. One of the other eight Thurston geometries,
H2×E – the cartesian product of the hyperbolic plane and the euclidean line – enables the user to traverse the
hyperbolic plane horizontally as they walk through a room, yet it retains familiar euclidean geometry in the
vertical direction. In this space, the virtual floor remains in the same place as the real-life floor. Jeff Weeks



has also explored H2 × E via a similar method to ours in unpublished work.
There are four ingredients that go into our virtual reality simulation of H2 × E as outlined in this paper:

1. A way to describe the points of H2 × E numerically, i.e. a model of H2 × E,
2. A way to convert points in the model into points in E3 that we can then draw on screen,
3. A way to move around H2 × E using the motion inputs from the virtual reality headset, and
4. A set of landmarks in H2 × E to draw, to help the viewer navigate the space – we use a tiling of H2 × E.

1 The Model of H2 × E

The space H2 × E is the cartesian product of the two spaces H2 and E. It is homogeneous, but unlike E3, S3

and H3, H2×E is not isotropic: the geometry is different when we look along an H2 versus an E direction. Our
model is the cartesian product of the hyperboloid model of H2 with the real line. The model of H2×E lives in
four-dimensional Minkowski space E3,1 as the set of points {(x, y, z, w) ∈ E3,1 | x2 + y2 = w2− 1, w > 0}.
The coordinates x, y and w are used for the hyperboloid model of H2, while the coordinate z is used for E.
We use the explicit parametrisation given by the map φ : R≥0 × [0, 2π)× R→ E3,1 given by

φ(ρ, θ, z) = (sinh ρ cos θ, sinh ρ sin θ, z, cosh ρ).

2 Drawing points in H2 × E on the screen

Figure 3: A geodesic in the
(Klein model)×E (blue), and a
straight line in E3 (red).

To draw points on screen, we cannot use the same trick as we did in H3

of ignoring the inverse of the exponential map and using the Klein model
instead [1]. Naı̈vely, we might try converting the x, y and w coordinates of
a point into a point in the Klein model of H2, sitting inside of the unit disk in
E2, and draw points in the cartesian product of the Klein model and E, using
z for the value in E. If we did this then we would see objects in the space, but
if we tried to move towards an object we would miss. This is because the light
rays in E3 which connect an object to our eyes do not generally lie along the
geodesics of (Klein model)×E. To properly account for this, we shall digress
to a discussion of geodesics and the exponential map in H2 × E.

Whilst geodesics in the Klein model are straight lines in the euclidean
space in which the model lives, geodesics in (Klein model)×E have an alto-
gether different flavour due to the anisotropic nature of H2×E. If we are at the origin, looking in the diagonal
direction shown in Figure 3, we see objects that are on the red line. But when we move in that direction we
will arrive at objects that are on the blue geodesic.

So, we need to return to the original plan in our previous paper [1] of calculating the inverse of the
exponential map in order to draw objects correctly. To do this, we need to work out parametrisations of
geodesics in our model of H2 × E in E3,1. Following the calculations outlined in Appendix A1, they have the
form

γ(t) = {sinh(ρ0t) cos θ0, sinh(ρ0t) sin θ0, z0t, cosh(ρ0t)}.

To draw points on screen, we construct the inverse of the exponential map. Given a point p in H2 × E,
this tells us what initial velocity in the tangent space we need in order to reach p in H2 ×E at time t = 1. The
inverse of the exponential map sends points on the (hyperboloid)×E in E3,1 to points in E3 via

(x, y, z, w) 7→

(
arcsinh(

√
x2 + y2)√

x2 + y2
x,

arcsinh(
√
x2 + y2)√

x2 + y2
y, z

)
.



(a) Our colouring on the {4, 6} tiling in
the Poincaré disk model.

(b) A fundamental domain for the tiling,
drawn in the Poincaré disk model.

(c) The fundamental domain glued up to
form a genus two surface.

Figure 4: Our colouring of the {4, 6} tiling.

The images of geodesics in H2 × E are straight lines in the tangent space. Thus if you look at a point in the
virtual reality experience and move towards it, you will eventually reach it.

3 Moving through H2 × E

Once we know the relationship between the viewer’s motions and the headset output, we must convert them
to motions in H2 × E. Moving through this space now consists of translating by isometries inherited from
E3,1 that leave the model unchanged. Turning this set of isometries into the exponential map (in the Lie
algebra sense, see [1] for further details) can be handled in a variety of ways. As both H2 and E can each be
embedded in a flat space of one higher dimension, the exponential map could be encoded in a block diagonal
5 × 5 matrix, but graphics cards are not optimised for this type of matrix multiplication. Instead, we can
take advantage of H2 × E being a product space to realize motions of the H2 factor using a 3 × 3 matrix
(implemented in exactly the same way as we did for H3 [1]) while independently encoding translation in the
E factor via simple addition.

4 The {4, 6} tiling of H2 and a colouring of H2 × E

Eventually, we plan to put recognisable, human scale objects in our simulation of H2 × E, for people to
interact with. For now, we pattern it with cubes, as we did for H3 [1]. In each horizontal H2 slice, we draw
the {4, 6} Schläfli symbol tiling: squares (4 sides), with 6 meeting at each vertex. These horizontal squares
are cross-sections of our cubes. At regular intervals in the E direction, one cube ends, and the next begins.
Because this is a product space, we have freedom to choose the height of the cubes in E relative to the
side length of the {4, 6} tiling of H2. We choose this height so that when viewed from its centre, a cube in
H2 × E has its vertices coincide with the vertices of a euclidean cube. The inverse of the exponential map
associates each of these vertices to a point in the tangent space that is a distance arcsinh(

√
2)/
√

2 away from
the centre. We take the vertices in the meshes that make up the cubes and their decorations in E3 and move
them upstairs into (hyperboloid)×E via the map from the Klein model to the hyperboloid model according to
the coordinate transformation (x, y, z) 7→ (x/

√
1− x2 − y2, y/

√
1− x2 − y2, z, 1/

√
1− x2 − y2). Once

in the hyperboloid model, transformations are handled through the exponential map. Unlike H3 which is
isotropic, the anisotropy of H2 × E causes the straight lines bounding the faces of the cube in E3 to become
curved as you look along a diagonal direction in H2 × E.

In Figure 2, we colour each layer of cubes in essentially the same way, coming from a colouring of the



(a) H2 × E initial view. (b) Moving forward 1/5 of a cube width. (c) Moving forward 2/5 of a cube width.

(d) Moving forward 3/5 of a cube width. (e) Moving forward 4/5 of a cube width. (f) Moving forward 5/5 of a cube width.

Figure 5: The aspect ratio of the cubes scales differently in the H2 and E directions.

{4, 6} tiling. Subsequent layers have their colours “rotated” slightly, around the circle of colours from black
to red to white to cyan. As in our colouring of the {4, 3, 6} honeycomb [1], the colouring on each layer comes
from lifting a colouring of a closed manifold, in this case the genus two surface (see Figure 4).

5 Revenge of curved spaces in virtual reality

As with H3 [1], our experience in H2 × E differs viscerally from in E3. One of the most striking differences
stems from the lack of isotropy in H2 × E. As we move forwards, the aspect ratio of objects in front of us
appears to change. Figure 5 shows a sequence of views, moving forwards from one cube into the next. The
octagon in front of us starts out tall and thin, and becomes wider as we approach. The octagons further into
the distance are even thinner. The reason for this behaviour in H2 × E is that an object’s apparent height goes
down linearly relative to its distance from us (just as it does in E3) but its apparent width scales exponentially.
This doesn’t happen in H3 – both width and height scale exponentially, as H3 is isotropic. Thus, the perceived
aspect ratio of objects does not change.

An interesting feature of H2 × E being a product space is that parallel transport affects directions
differently. In H3 you experience holonomy – when you traverse a loop in any plane you experience the world
as having rotated. This is because the vector pointing “up” gets transported around the loop and comes back
as rotated [1]. In H2×E, you experience this phenomenon when looking along the E direction – that is to say,
the loop lies in the H2 plane (see Figure 6). The frame is transported in the same it was in any direction in H3.
However, if you look directly along the H2 plane and traverse a loop, first moving to the right for distance d
along the H2 direction, then up along E for distance d, then to the left along H2 and finally returning to the
starting point by travelling down along E, you will notice that the world has not rotated. This is because pure
isometries in H2 and E commute as H2 × E is a cartesian product.

6 The In-Space View: Visualising H2 × E and Parallax

In the virtual reality headset, a separate image is rendered for each eye, creating the illusion of a three-
dimensional environment. Humans judge the distance of objects from them using a number of different



(a) H3 initial view. (b) H2 × E view 1: along E. (c) H2×E view 2: 45◦ between
the E and H2.

(d) H2 × E view 3: along H2.

(e) Fig. 7(a) after moving right
0.5 hyperbolic units.

(f) Fig. 7(b) after moving right
0.5 hyperbolic units.

(g) Fig. 7(c) after moving right
0.5 hyperbolic units.

(h) Fig. 7(d) after moving right
0.5 hyperbolic units.

(i) Fig. 7(e) after moving up 0.5
hyperbolic units.

(j) Fig. 7(f) after moving up 0.5
hyperbolic units.

(k) Fig. 7(g) after moving up
0.5 hyperbolic units.

(l) Fig. 7(h) after moving up 0.5
hyperbolic units.

(m) Fig. 7(i) after moving left
0.5 hyperbolic units.

(n) Fig. 7(j) after moving left
0.5 hyperbolic units.

(o) Fig. 7(k) after moving left
0.5 hyperbolic units.

(p) Fig. 7(l) after moving left
0.5 hyperbolic units.

(q) Fig. 7(m) after moving
down 0.5 hyperbolic units.

(r) Fig. 7(n) after moving down
0.5 hyperbolic units.

(s) Fig. 7(o) after moving down
0.5 hyperbolic units.

(t) Fig. 7(p) after moving down
0.5 hyperbolic units.

Figure 6: Holonomy rotates reference frames after moving in a loop in curved space. Rotations in the H2 plane (column
2) have the same effects as looking in any direction in H3 (column 1). However other directions behave differently. (In
hyperbolic units the distance from the centre of a cube to the centre of a face is arccosh(

√
3/2).)

techniques. One such technique is our use of stereopsis, the perception of depth inferred from differences
in the visual input coming into our two eyes. This employs parallax, the difference between the apparent
position of an object viewed from different viewpoints. An object that is directly in front of us and close to us,
will appear on the right side of the field of view of one’s left eye, and on the left side of the field of view of
one’s right eye. An object that is directly in front of us but very far away from us will appear in the centre of
the field of views from each eye, assuming that our eyes are both pointing directly forward (see Figure 7).

In particular, an inhabitant of euclidean space expects to see an object that is infinitely far away along



(a) Geodesics (light rays) from two eyes
looking straight ahead would diverge in H2.

(b) Eyes must point inward to see an object
that is infinitely far away in H2.

Figure 7: Geodesic deviation is responsible for the phenomena associated with
parallax in H2. See also [6].

rays of light that enter their two
eyes along parallel geodesics.
In negatively curved spaces
however, geodesics that enter
one’s eyes along parallel direc-
tions diverge as we follow the
light rays backwards – there can
be no single object that those
light rays came from. Instead, a
euclidean visitor to hyperbolic
space has to turn their eyes in-
wards to see an object that is
infinitely far away. The effect is
that all objects appear to be rel-
atively close by. Objects in hy-
perbolic space are further away
than they appear.

Euclidean visual effects create the illusion of depth by using the average pupil separation to create separate
images from “cameras” centred at each eye. Where should we put the viewer’s eyes in our simulations? This
is a subtle point, to which we give two answers, both justifiable:

1. We could display the world as a hyperbolic being would see it – take the eyes to be virtual cameras
placed inside of the curved space, each with its own inverse of the exponential map into its own distinct
tangent space. Light rays follow geodesics that leave each point in the space and travel to the centre of
each camera.

2. Instead, our present simulation uses one tangent space (centred at the headset) as the copy of E3 in
which the euclidean user lives. The cameras are placed in that tangent space according to the user’s
physiology. In this case, the visually and physically perceived positions of objects on the user’s body –
for example a hand-held controller – are identical.

This being said, the user is unlikely to be able to distinguish between renderings in these two situations. The
average interpupillary distance (54-68 mm in adult humans) is much smaller than the radius of curvature we
use, 1 m, so differences will be minor.

7 Future directions: tracking objects in space and other geometries

Floating point errors provide a challenge in tracking objects in hyperbolic space, since the elements of our
isometry matrices are exponential functions of the distance travelled in applying them. In our simulations so
far, the user never actually leaves the central cube of the tiling: as they attempt to they are teleported from one
side of it to the other, and the colours of the cubes are updated appropriately. We would not be able to use this
trick for objects left in the world. One solution would be to record the location of an object by its position
relative to a cube of our tiling, together with the cube’s location recorded as a word in the tiling’s generators.
However, with this kind of data structure it is non-trivial to calculate, for example, which objects are close to
your current position and so should be drawn on screen.

In addition to putting more recognisable objects and architecture into our simulations and allowing users
to interact with objects, we would like to build similar simulations for the other Thurston geometries. Each
of these geometries presents a unique challenge. Both S3 and S2 × E have a multivalued exponential maps,
thus we need to calculate the exponential map both in front of the viewer and behind them in order to draw



a complete image on the screen. Nil, Solv and ˜PSL2(R) don’t have the ubiquitous standard models that
spherical and hyperbolic space have. In our future implementations of Thurston geometries, we will use
models of Emil Molnár [2] to create the exponential map as well as the set of isometries.
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A1 Geodesics in H2 × E

In order to implement other curved spaces in virtual reality, we will need to calculate the inverse of
the (riemannian geometry) exponential map. Here, we present a formal method using differential geometry.
The first step in calculating geodesics is finding the components of the metric tensor. In our parametrisation
φ(ρ, θ, z) = (sinh ρ cos θ, sinh ρ sin θ, z, cosh ρ), the components of the metric tensor gij are given by
gij = 〈∂iφ, ∂jφ〉, where i, j ∈ {ρ, θ, z} and 〈·, ·〉 denotes the inner product in the ambient space, E3,1. The
three non-zero components of the metric tensor are gρρ = gzz = 1 and gθθ = (sinh ρ)−2. Each of the
derivatives ∂iφ is a vector in the tangent space of H2 × E.

The derivative of a vector in the tangent space tells us the rate of change of that vector (both magnitude
and direction) as we move along another vector in the tangent space. If the derivative has no component in
any direction other than parallel to itself, then parallel transport in the direction of the vector preserves it.
This is our condition for being a geodesic. Thus the geodesic γ(t) = φ(ρ(t), θ(t), z(t)) satisfies the equation
∇γ̇ γ̇ = 0, where γ̇ = dγ

dt and ∇X is the Levi-Civita connection. In coordinate form this may be re-written as

∂2t γ
λ +

∑
µ,ν

Γλµν∂tγ
µ∂tγ

ν = 0,

where Christoffel symbols of the second kind Γλµν = 1
2

∑
σ g
−1
λσ (∂νgσµ + ∂µgσν − ∂σgµν) are the components

of the Levi-Civita connection and λ, µ, ν, σ ∈ {ρ, θ, z}. In H2 × E, the only non-zero Christoffel symbols
are Γρθθ = − cosh ρ sinh ρ, and Γθρθ = Γθθρ = coth ρ. This set of coupled differential equations gives a
formula for parametrised curves in the coordinate map γ(t) = (ρ(t), θ(t), z(t)). In H2 × E geodesics
emanating from the origin (0, 0, 0, 1) of the hyperboloid must satisfy the differential equations for curves
ρ′′(t) = z′′(t) = θ′(t) = 0, with boundary conditions ρ(0) = 0, z(0) = 0, θ(0) = θ0, ρ(1) = ρ0 and
z(1) = z0. Thus they are parametric curves in E3,1 of the form

γ(t) = {sinh(ρ0t) cos θ0, sinh(ρ0t) sin θ0, z0t, cosh(ρ0t)}.

http://www.geometrygames.org/CurvedSpaces/
http://www.geometrygames.org/CurvedSpaces/
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